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a b s t r a c t

The paper addresses the development of a simple three-variable kinetic model of CO oxidation on metallic
catalysts under isothermal conditions and the numerical study of chaotic dynamics of the reaction rate. It
is suggested that, at some concentrations of the adsorbed oxygen, a surface modification occurs and the
reaction capability of adsorbed oxygen changes, so that the activation energy of the interaction between
the adsorbed species increases sharply. Moreover, oxygen atoms can penetrate into the subsurface catalyst
layer. At some critical values of the subsurface oxygen concentration, the catalyst surface reconstructs
scillations
haotic dynamics
inetic model
urface modification
O oxidation

and the probability of oxygen adsorption decreases sharply. Based on these suggestions, a three-variable
kinetic model of CO oxidation on the metals of the platinum group is developed, which has the hierarchy
of characteristic times and one slow variable. For the purpose of studying the dynamics of the model, the
one-parameter family of two-variable subsystems with fast variables is considered, and the steady states
and periodic solutions of these subsystems were investigated. The conditions are described under which
the dynamics of the model becomes chaotic by means of a cascade of period-doubling bifurcations or

eak o
owing to complex multip

. Introduction

One of the most widely studied heterogeneous catalytic
eactions is the CO oxidation on the platinum group metals. Obser-
ations of such critical phenomena as steady state multiplicity,
elaxation oscillations, and chaotic dynamics help to determine

more reliable reaction mechanism and better understand the
hysical–chemical processes in the “reaction medium-catalyst”
ystem. There are many efforts to explain theoretically the
elaxation or complex irregular oscillations, involving different
ypothesis such as dependence of the activation energy on the
urface coverages [1], formation of the metal oxide or subsur-
ace oxygen in the course of the oxidation reaction [2,3] and the
dsorbate-induced reversible surface transformation [4,5,6].

Based on the experimental studies of the CO oxidation mecha-
ism, which were carried out on the iridium surface at ultra high
acuum conditions, it was shown that, due to the reconstructive

roperties of the open and stepwise faces of the platinum met-
ls, some oxygen atoms can penetrate into the subsurface layers
nd cause both structural and chemical modification of the adsorp-
ion sites [7,8]. The kinetic model suggested in Ref. [8] accounts

∗ Corresponding author. Tel.: +7 383 326 9426; fax: +7 383 330 8056.
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scillations.
© 2009 Elsevier B.V. All rights reserved.

for the dynamical behavior of the concentrations of CO and oxygen
adsorbed on the initial and oxidized metallic surfaces as well as the
behavior of the subsurface oxygen concentration. The model was
able to describe some experimental data and predict the multiplic-
ity of steady states and the harmonic oscillations of the reaction
rate near the Andronov–Hopf bifurcation points.

Following Ref. [9], we now develop a simpler kinetic model of CO
oxidation on platinum group metals under isothermal conditions,
which describes both the relaxation and complex irregular oscil-
lations. To study the dynamics of this nonlinear kinetic model, we
use the hierarchical approach suggested in Refs. [10,11,12], where a
three-variable kinetic model with fast, intermediate and slow vari-
ables for heterogeneous hydrogen oxidation over metallic catalysts
was considered, and it was shown that if the one-parameter family
of subsystems of the fast and intermediate variables has a hysteresis
on the curve of steady states and some maximal families of stable
limit cycles then the corresponding three-variable system can have
the multipeak or complex irregular oscillations.

2. Kinetic model
Consider the kinetic scheme of CO oxidation on the platinum
group metals based on the Langmuir–Hinshelwood mechanism:

CO + Z
K1
�
K−1

ZCO, (1)

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:iea78@mail.ru
mailto:chum@catalysis.ru
dx.doi.org/10.1016/j.cej.2009.02.017
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will consider the model (6)–(8) at the real experimental conditions:

PCO = 1.1 × 10−7 Torr, PO2 = 9 × 10−7Torr, T = 500 K.

Table 1
E.A. Lashina et al. / Chemical En

2 + 2Z
K2−→ 2ZO, (2)

CO + ZO
K3−→ CO2 + 2Z. (3)

The processes of subsurface oxygen formation and its reduction
uring the reaction are determined as follows [7,8]:

O + ZV
K4−→ ZVO + Z, (4)

VO + ZCO
K5−→CO2 + ZV + Z. (5)

Here ZCO and ZO are the intermediate compounds of CO and
xygen on the metallic surface, Z and ZV are the active sites on
he surface and in the subsurface layer of the catalyst, ZVO is the
ntermediate compound of oxygen penetrated into the subsurface
ayer.

Basing on the mechanism (1)–(5), we consider the kinetic model
hat describes the behavior of the dimensionless concentrations of
O and oxygen adsorbed on the surface (x and y, correspondingly)
nd also the dimensionless concentration of subsurface oxygen (z):

′ = K1(1 − x − y) − K−1x − K3xy, (6)

′ = 2K2(1 − x − y)2 − K3xy, (7)

′ = K4y(1 − z) − K5xz ≡ ε(˛y(1 − z) − xz). (8)

The rate of CO2 production is given by the formula

CO2 = K3xy+ K5xz.

The rate constants of the elementary reactions depend on the
artial pressures PO2 and PCO (Torr) of oxygen and carbon oxide in
he gas phase and on the temperature T (K) as follows [7,8]:

K1 = 3.6 × 105PCO, K−1 = 1013 × exp
(

− E1

(RT)

)
,

K2 = K20PO2 , K3 = 1013 × exp
(

− E3

(RT)

)
,

here R is the universal gas constant.
We suggest that the processes of adsorption, desorption and

eaction between adsorbed species are faster than the oxygen
enetration and the interaction between subsurface oxygen and
dsorbed CO. Therefore, the elementary reaction rate constants K4
nd K5 are much smaller than Ki, i = 1, −1, 2, 3; and we consider the
odel (6)–(8) with parameters

= K5 � 1, ˛ = K4

K5
.

In order to describe the influence of the reaction medium on
he properties of the metal surface, we assume that there exist
ome critical values of the surface coverage with oxygen at which
surface modification occurs and the reaction ability of the cata-

yst changes strongly, i.e., E3 sharply increases [9]. The activation
nergy E3 of interaction between the adsorbed species depends on
he concentration y of adsorbed oxygen and it is described by the
ollowing smooth function:

3(y) =

⎧⎪⎨
⎪⎩
E31, y ≤ yc − ı,
Ẽ3, |y− yc |< ı,
E32, y ≥ yc + ı,

(9)

here

˜3(yc − ı) = E31, Ẽ3(yc) = E31 + E32 , Ẽ3(yc + ı) = E32.
2

The parameters yc and 0 < ı� 1 determine the middle and the
idth of the interval of y values over which E3 increases (see Fig. 1a).

Moreover, due to the oxygen penetration into the subsurface
ayer, a reconstruction of the metallic surface can occur, changing
Fig. 1. Dependences of E3 on y (a) and K20 on z (b) for yc = zc = 0.5, and ı= ız = 0.1.

the adsorption properties of the catalyst. For some critical values
of the concentration of subsurface oxygen, K20 sharply decreases.
We use a similar smooth function to describe the dependence of
K20 on z:

K20(z) =

⎧⎪⎨
⎪⎩
K21, z ≤ zc − ız,
K̃20, |z − zc |< ız,
K22, z ≥ zc + ız,

(10)

where

K̃20(zc − ız) = K21, K̃20(zc) = K21 + K22

2
, K̃20(zc + ız) = K22.

The parameters zc and 0 < ız � 1 determine the middle and the
width of the z-interval over which K20 decreases (see. Fig. 1b).

The values of the activation energies E1, E31, and E32, as well as
the constants for the oxygen adsorption rate are given in Table 1. We
Values of the activation energies and the rate constants.

E1 (kcal/mol) E31

(kcal/mol)
E32

(kcal/mol)
K21

(s−1 Torr−1)
K22

(s−1 Torr−1)

35 28 33 0.9 × 105 0.11 × 105
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The model (6)–(8) is considered in the region

= {(x, y, z) : x, y, z ≥ 0, x + y ≤ 1, z ≤ 1},
which corresponds to the nonnegative and bounded values of

he concentrations. Let � denote the surface in ˝, in which the
ate of z-coordinate change is equal to zero:

= {(x, y, z) ∈˝ : h(x, y, z) ≡ ˛y(1 − z) − xz = 0} (11)

The system (6)–(8) of autonomous differential equations gener-
tes a vector field (and a phase flow) in the phase space (x, y, z). Let us
escribe some important properties of this field which are satisfied

or every set of values of the parameters under consideration.
There exists a hyperbolic steady state at the point (0,1,1) such

hat one of its stable separatrices (0, 1, z(t)) lies on the boundary
urface of the region ˝, while the leading unstable separatrix is
irected into inside of ˝. If we consider a cross-section of ˝ with
plane z = const then there always exists a saddle steady state of

he subsystem (6)–(7) at the point (xs,ys) = (0,1), whose local stable
anifold does not belong to ˝, however one of the unstable sep-

ratrices lies inside ˝. Studying the structure of the null-clines of
he two-variable subsystems (with parameter z) of the dynamical
ystem (6)–(8) allows us, for an arbitrarily small � > 0, to construct a
ubregion˝� ⊂˝ such that the vector field of (6)–(8) at the bound-
ry ∂˝� is transversal and directed inside the region. Hence, the
egion ˝ is invariant with respect to the phase flow; i.e., if a point
x0,y0,z0) is taken in ˝ then the solution (x(t),y(t),z(t)) of (6)–(8)
ith the initial condition (x0,y0,z0) at t = 0 belongs to˝ for all t > 0.

Since z is the only slow variable (ε� 1) in the three-variable
utonomous dynamical system, the dynamics of the model (6)–(8)
s determined by the structure of two sets of solutions (the steady
tates and the periodic solutions) of the one-parameter family
f two-variable subsystems (6)–(7) with parameter z∈[0,1] (see
10,11]). Our purpose is to clarify whether the kinetic model (6)–(8)
escribes some complex and irregular oscillations under assump-
ion of isothermal conditions.

. Two-variable model

In Ref. [9], we studied the dynamics of the two-variable model
6)–(7) at a constant value of the oxygen adsorption rate constant
20 = 0.9 × 105 s−1 Torr−1. In the case E3 = const, this kinetic model
ualitatively describes the steady state multiplicity and does not
xhibit oscillatory behavior. We showed that if the activation energy
3 depends on y due to (9) then the system (6)–(7) has relaxation
scillations in the case of the oxygen excess in the gas phase. More-
ver, as ı→ 0, the variables x + y and x − y are correspondingly fast
nd slow near the stable limit cycle, i.e.,

x′ + y′ | � | x′ − y′|.
We studied the effect of the parameters yc and ı which deter-

ine the interval of y values, where the activation energy E3
hanges; and we showed that, for small values of yc and ı at some
xed T and PCO, there are two PO2 values at which the bifurcation
f a periodic solution from a homoclinic trajectory (a saddle loop
eparatrix in our case) occurs in (6)–(7).

Now let K20 /= const and depend on z due to (10). Consider the
ase when the set of steady states of the one-parameter family of
ystems (6)–(7) has a hysteresis. For example, put zc = yc = 0.5 and
z = ı= 0.1. Then there is an interval (zB, zC) of z-values for which
he system (6)–(7) has three steady states. Outside of this interval,

t 0 ≤ z < zB and zC < z ≤ 1, a single steady state exists for every z.
herefore, the set of the steady states forms a curve ABCD, which
onsists of the three branches: AB, BC, and CD. The branch AB is
table, while BC is unstable and consists of the saddle points of
6)–(7).
Fig. 2. The maximal families ABCD and Ss of the steady states and the periodic solu-
tions of the system (6)–(7) and the surface� (a); the multipeak oscillations of (6)–(8)
(b); and the rate of CO2 production (c). The parameters are as follows: yc = zc = 0.5,
ı= ız = 0.1, ˛= 4.65, and ε= 3 × 10−5.

Moreover, at zmax = 0.5096, the stable periodic solution appears
in (6)–(7) in result of the Andronov–Hopf bifurcation. So, the steady
states on the branch CD are stable for z∈[zmax, zC) and unstable for

z∈[0,zmax). The system (6)–(7) has a maximal family Ss of stable
periodic solutions for z in the interval [0, zmax) (see Fig. 2a). Note
that we compute the maximal family of the periodic solutions to
(6)–(7) with parameter z by using the efficient algorithm developed
in Ref. [13].
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and (z2 , z2 ), where z1 < z2 . At z = z1 and z = z2 ,
ig. 3. The maximal set ABCD of steady states, the maximal families S1 and S2 of sta-
le periodic solutions of the system (6)–(7) and the surface� for˛= 4.65. Here 1 and
are the saddle loop separatrices, z1

min = 0.4776, z1
max = 0.521452, z2

min = 0.538367,
2

max = 0.5385, zc = 0.5, ız = ı= 0.1, and yc = 0.101.

. Multipeak oscillations
Let the value of ˛ be such that the surface � determined by (11)
ntersects the curve ABCD at only one point on the branch BC and
oes not intersect the surface Ss of periodic solutions of (6)–(7).

ig. 4. The attracting set A (a) and the chaotic oscillations of the reaction rate (b) at
= 4.65 and ε= 0.00038.
ring Journal 154 (2009) 82–87 85

Then, on the curve AB the rate of change of z is negative, while z′ > 0
on the curve CD and surface Ss.

In this case the model (6)–(8) has the only unstable steady state
and a stable limit cycle describing multipeak oscillations at some
sufficiently small ε (see Fig. 2b,c). If the initial point (x, y, z) is near
AB in the phase space of (6)–(8), then this point moves down along
the trajectory near AB while z > zB. At some z just under zB, the point
“jumps” to the neighborhood of the surface Ss, turns several times
around Ss, moves up along the branch CD, and “jumps” back to AB
at z near zC. If the parameter ε decreases, then the number of turns
around Ss increases. Thus, the number of peaks of the reaction rate
increases with decreasing the rate constant K5 = ε of the subsurface
oxygen formation.

5. Cascade of period doubling bifurcations and chaotic
dynamics

Consider the case when the family Ss of stable periodic solutions
bifurcates, so that the system (6)–(7) has two maximal families
Ss

1 and Ss
2. Note that this situation is similar to the one studied in

Ref. [11] for the hydrogen oxidation reaction. In this case, the peri-
odic solutions of (6)–(7) exist for z in the intervals (z1

min, z1
max)

min max max min min max
the Andronov–Hopf bifurcations occur in the system (6)–(7). At
z = z1

max and z = z2
min, the periodic solutions degenerate into the

saddle loop separatrices; i.e., there exist two saddle loop sepa-
ratrices in the phase space. Near these homoclinic bifurcations,

Fig. 5. The Poincare map P (a) and the one-dimensional map F (b) for the trajectory
of Fig. 4a.
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Fig. 6. Regular (a) and irregular (b–d) multipeak oscillations of the system

he solutions are highly sensitive to the small changes of param-
ters. If z approaches the bifurcation value (for example, z = z1

max),
he period of oscillations increases to infinity, while the amplitude
emains almost constant [14]. In this case, the system (6)–(7) stays
ear the saddle steady state located on the branch BC for a long
ime during the period. For z1

max < z < z2
min, the system (6)–(7) has

hree steady states inside ˝ and no periodic solutions. In more
etail, the first steady state in CD is unstable; the second, in BC,

s a saddle point; and the third, on the curve AB, is a sink which
ttracts almost all trajectories. For example, such a structure of
olutions of (6)–(7) exists at zc = 0.5, ız = ı= 0.1, and yc = 0.101 (see
ig. 3).

Let ˛ be such that the surface � intersects S1
s. The following

heorem holds:

heorem ([15,12]). Let the three-variable system with a small param-
ter 0 < ε� 1:

′ = f (x, y, z), y′ = g(x, y, z), z′ = εh(x, y, z),

be such that the one-parameter family of the two-variable subsys-
ems with parameter z

′ = f (x, y, z), y′ = g(x, y, z)

has a family of stable limit cycles �(z) for z from an interval I.

onsider the function

(z) =
∫ T(z)

0

h(ϕz(t), z(t), z)dt,
(8) for ε= 0.0001 (a), 7.1965 × 10−5 (b), 7.1957 × 10−5 (c), 7.191 × 10−5 (d).

where T(z) is the period of solution x =ϕz(t), y = z(t) that corresponds
to the limit cycle �(z). Let z*∈I be such that �(z*) = 0 and �′(z*) < 0.
Then the three-variable system has a stable limit cycle �ε with period
Tε such that �ε→�(z*) and Tε→ T(z*) as ε→ 0.

In the case under consideration, for ˛= 4.65, there exists
z* = 0.5207 such that �(z*) = 0 and �′(z*) < 0 on the periodic solu-
tion �(z*) of (6)–(7). Note that z* is close to z1

max and z* increases
as ˛ increases. It follows from the theorem that there exists ε0 > 0
such that, for 0 < ε< ε0, the model (6)–(8) has a stable limit cycle.
Let us denote it by �ε.

Numerically we obtain that the period-doubling bifurcation
occurs at ε1 = 2.079 × 10−4 > ε0; i.e., the cycle �ε becomes unstable
at � = ε1 (denote it by�1) and a stable limit cycle� appears in a small
neighborhood of �1. The cycle �1 corresponds to the Tp-periodic
solution (Tp = 276.8948 s); and � , to the 2Tp-periodic solution. The
consequent period-doubling bifurcations occur atε2 = 3.075 × 10−4,
ε3 = 3.496 × 10−4, and so on. The model (6)–(8) generates chaotic
oscillations via the Feigenbaum cascade of period doubling bifur-
cations such that the sequence of ε= εi, i = 1, 2, . . ., has a limit value
ε̃ = lim

i→∞
εi. For some ε above ε̃, the model (6)–(8) has complex irreg-

ular oscillations.
For example, consider the dynamics of (6)–(8) at ε= 3.8 × 10−4

(see Fig. 4). We obtain that there is an attracting set A in the phase

space, which has a complex structure. To study the oscillations,
we construct the Poincare map P: S → S of a planar region S ⊂˝
into itself. Let S lie on the plain y = 0.1 so that the points on S
have the coordinates x ∈ (0.248, 0.252) and z ∈ (0.505, 0.511). Note
that the vector field (6)–(8) is such that, along every trajectory,



ginee

t
t
i
t
s
c
i
c

W
2
u
t
o

6

v
f
i
u
t
t
a
t
“

I
a
{
I
x
z

7

t
p
L
w
t
o
s
c
o
a
t
t
o
c

i
t
m
o
s

[

[

[

[

[
Systems on a Plane, Nauka, Moscow, 1966.
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he y-coordinate increases under crossing S. This means that S is
ransversal to the vector field. Consider some point 	0 = (x0, y0, z0)
n section S near the attracting set A. Let 	k = P(k)(	0), k = 1, 2, . . ., be
he images of 	0 obtained using k times the Poincare map P. Our
imulations show that the points 	k, k = 1, 2, . . ., fill up a set which
an be approximated with a segment Il of some curve l; and there
s the one-to-one map ω of Il onto a segment Ix on OX axis. In our
ase, Ix = {x: 0.2485 ≤ x ≤ 0.2514} (see Fig. 5).◦

Let us also plot the one-dimensional map F = P ◦ω from Ix to Ix.
e have shown that F is unimodal and has unstable cycles of periods

, 4, and so on. Thus, on the attracting set A there are infinitely many
nstable periodic orbits with different periods. By the Sharkovsky
heorem [16], we have a one-dimensional evidence for the existence
f chaotic dynamics in the model (6)–(8).

. Chaotic multipeak oscillations

The model (6)–(8) also exhibits chaotic dynamics for increasing
alues of ˛. Recall that the set of steady states and the two maximal
amilies of periodic solutions of the subsystem (6)–(7) are shown
n Fig. 3. For ˛= 5.5 and ε= 0.0001, the model (6)–(8) exhibits reg-
lar multipeak oscillations (see Fig. 6a). If the initial point lies near
he branch AB consisted of the stable steady states of (6)–(7), then
he corresponding point in the phase space slowly moves down
long AB until z = zB, where it “jumps” to the surface Ss

1. Thereafter,
he point turns several times around Ss

1, while z < z1
max, and then

jumps” back to the branch AB. Thus, this is a closed trajectory.
As the value of ε decreases, the oscillations become irregular.

ndeed, consider the times t = ti, when the z-coordinate is near zB

nd is minimal. We obtain that the distribution of the time series
ti} on a fixed long enough time interval is irregular (see Fig. 6b–d).
n this case, for small enough changes of ε and the initial values of
, y and z, we can obtain different number of the minimal values of
(t) with different distribution of {ti} over the same time interval.

. Conclusions

Studying complex dynamics of CO oxidation reaction on
he platinum group metals under isothermal conditions, we
roposed a simple three-variable kinetic model based on the
angmuir–Hinshelwood mechanism with two addition stages,
hich are the formation of the subsurface oxygen and its interac-

ion with adsorbed CO. We proposed to describe the chemical effect
f the surface modification under oxygen penetration into the sub-
urface layer as a strong change of the adsorption properties of the
atalyst surface. Moreover, this model includes the sharp change
f the catalyst activity at the certain values of the surface cover-
ge with oxygen. As a result, this kinetic model takes into account
he stepwise dependences of, first, the activation energy of interac-
ion between adsorbed species on the surface coverage by adsorbed
xygen and, second, the constant of oxygen adsorption rate on the
oncentration of subsurface oxygen.

The processes of formation of the subsurface oxygen and its

nteraction with the adsorbed CO are slower than the adsorp-
ion, desorption, and interaction of adsorbed species. Therefore, the

odel has one slow variable z, i.e., the concentration of subsurface
xygen. The dynamics of this model is determined by the sets of
teady states and periodic solutions of the one-parameter family of

[

[

ring Journal 154 (2009) 82–87 87

two-variable subsystems, which describe the behavior of the con-
centrations of CO and oxygen adsorbed on the surface for different
possible values of the parameter z.

We have shown that, under oxygen excess in the gas phase,
our two-variable system has a hysteresis of steady states, and the
periodic solutions exist for z in two intervals described above. At
one of the boundaries of each interval, the Andronov–Hopf bifurca-
tion occurs; while, at the other boundaries, the periodic solutions
degenerate into the saddle loop separatrix. In this case, we found
the following two scenarios of chaotic oscillations generation in the
three-variable kinetic model: through the cascade of period dou-
bling bifurcations and via the irregular multipeak oscillations. Thus,
the dynamics of the CO oxidation reaction can essentially change
under some small variation of the catalyst properties that deter-
mine the ability for the subsurface oxygen formation.
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